Symbiogenesis in Learning Classifier Systems
نویسندگان
چکیده
Symbiosis is the phenomenon in which organisms of different species live together in close association, resulting in a raised level of fitness for one or more of the organisms. Symbiogenesis is the name given to the process by which symbiotic partners combine and unify, that is, become genetically linked, giving rise to new morphologies and physiologies evolutionarily more advanced than their constituents. The importance of this process in the evolution of complexity is now well established. Learning classifier systems are a machine learning technique that uses both evolutionary computing techniques and reinforcement learning to develop a population of cooperative rules to solve a given task. In this article we examine the use of symbiogenesis within the classifier system rule base to improve their performance. Results show that incorporating simple rule linkage does not give any benefits. The concept of (temporal) encapsulation is then added to the symbiotic rules and shown to improve performance in ambiguous/non-Markov environments.
منابع مشابه
NEW CRITERIA FOR RULE SELECTION IN FUZZY LEARNING CLASSIFIER SYSTEMS
Designing an effective criterion for selecting the best rule is a major problem in theprocess of implementing Fuzzy Learning Classifier (FLC) systems. Conventionally confidenceand support or combined measures of these are used as criteria for fuzzy rule evaluation. In thispaper new entities namely precision and recall from the field of Information Retrieval (IR)systems is adapted as alternative...
متن کاملFault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کاملThe Introduction of a Heuristic Mutation Operator to Strengthen the Discovery Component of XCS
The extended classifier systems (XCS) by producing a set of rules is (classifier) trying to solve learning problems as online. XCS is a rather complex combination of genetic algorithm and reinforcement learning that using genetic algorithm tries to discover the encouraging rules and value them by reinforcement learning. Among the important factors in the performance of XCS is the possibility to...
متن کاملImproving Accuracy in Intrusion Detection Systems Using Classifier Ensemble and Clustering
Recently by developing the technology, the number of network-based servicesis increasing, and sensitive information of users is shared through the Internet.Accordingly, large-scale malicious attacks on computer networks could causesevere disruption to network services so cybersecurity turns to a major concern fornetworks. An intrusion detection system (IDS) could be cons...
متن کاملThe Introduction of a Heuristic Mutation Operator to Strengthen the Discovery Component of XCS
The extended classifier systems (XCS) by producing a set of rules is (classifier) trying to solve learning problems as online. XCS is a rather complex combination of genetic algorithm and reinforcement learning that using genetic algorithm tries to discover the encouraging rules and value them by reinforcement learning. Among the important factors in the performance of XCS is the possibility to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Artificial life
دوره 7 1 شماره
صفحات -
تاریخ انتشار 2001